The diffusion capacity of lung to gases

- **Definition:** The volume of gas which is diffused/min/1mmHg difference in partial pressure of the gas.
- Measurement: The diffusion capacity for CO (D_{LCO}) is measured as an index of diffusion capacity because its uptake is diffusion limited.
 - $\begin{array}{c|c} & D_{LCO} \text{ is proportional to the amount of CO entering the blood (V_{CO})} \\ & \text{divided by P}_{CO} \text{ in the alveoli (P}_{ACO}) \text{ minus the partial pressure of CO} \\ & \text{in the blood entering pulmonary capillaries} \approx \text{zero} \text{ (except in habitual smokers)} & V_{CO} & V_{CO} \end{array}$

 $D_{LCO} = ----- \rightarrow D_{LCO} = ---- P_{ACO} - P_{aCO} \qquad P_{ACO}$

• Factors: same factors that affect rate of gas diffusion through the respiratory membrane affects diffusion capacity of the lung

 It is directly proportional to the surface area of alveolo-capillary membrane and inversely proportional to its thickness.

• Normal value

- DLco at rest is 25mL/min/mmHg (Diffusion coefficient = 0.8)
 - It increases to three fold during exercise because of capillary dilation and an increase in the number of active capillaries
- DLO₂ = DLCO = 25mL/min/mmHg (Diffusion coefficient =1)
 - $rightarrow \uparrow \text{DLO}_2$ in Exercise
 - $rac{1}{\sim} \downarrow \text{DLO}_2$ Diseases (fibrosis of alveolar walls)
- $D_{LCO_2} = 400 \text{ml/min/mm Hg} (> D_{LO_2})$ (Diffusion coefficient =20)
 - \bigcirc High solubility of CO₂ in cell membrane (CO₂ retention is rarely a problem in patients with alveolar fibrosis even when the reduction in diffusion capacity for O₂ is sever)

Effect of V/Q on alveolar gas concentration

- Ratio of alveolar ventilation(V) to pulmonary blood flow (Q)
 - Matching ventilation and perfusion is important to achieve the ideal exchange of O₂ and CO₂
 - Normal V/Q (whole lung) at rest is 0.8 (4L/min ÷ 5L/min)

Ventilation	Normal	Zero	Normal
Perfusion	Normal	Normal	Zero
V/Q	Normal	Zero (0 ÷ 5)	Infinity $(4 \div 0)$
Situation	Normal	Complete airway obstruction →shunted blood	Pulmonary artery obstruction \rightarrow dead space
Gas exchange	Optimal	No gas exchange	No gas exchange
Alveolar:Po ₂ mmHg Pco ₂ mmHg	Po ₂ = 100 Pco ₂ = 40	Po ₂ = 40 Pco ₂ = 46	Po ₂ = 149.7 Pco ₂ = 0.3

Lecture 7

Transport of O₂ and CO₂ between the lungs and the tissues:

Objectives

- The manner in which O_2 flows downhill from the lungs to the tissues and CO_2 flows downhill from the tissues to the lungs.
- \circledast The reaction of O₂ with Hb & O₂-Hb dissociation curve.
- The important factors affecting affinity of hemoglobin for O_2 and physiological significance of each.
- The reactions that increase the amount of CO_2 in the blood, The CO_2 dissociation curve for arterial and venous blood.

Factors affecting interstitial fluid (IF) Po₂=40mmHg

Factor		IF Po ₂ (mmHg)
Blood flow	↑Q	↑ Po ₂
Hb concentration	↓Hb	$\downarrow Po_2$
Tissue metabolism	↑ Metabolism	$\downarrow Po_2$

Diffusion of CO_2 from the cells to the tissue capillaries and from the pul. capillaries to the alveoli:

Effect of tissue metabolism and blood flow on interstitial Pco₂ (46mmHg):

Fa	ctor	Interstitial Pco ₂ (mmHg).
Blood flow	\downarrow Q	↑ Pco ₂
Metabolism	↑ Metabolism	↑ Pco ₂

Oxygen Transport:

- 1) 98.5 % combines with Hb (Hb increases the O_2 carrying capacity of blood 70-fold).
- 2) 1.5 % dissolved in plasma

Transport of oxygen in dissolved form

 \odot 1.5 % of O₂ is transported in the dissolved form.

• Dissolved $O_2 \alpha PO_2$ (0.003ml/dL blood/mmHg PO₂).

	Arterial blood (PO ₂ =95mmHg)	Venous blood (PO ₂ =40mmHg)	O ₂ transported to tissues by each 100 ml of blood
O ₂ content (ml /dL blood)	(0.003 ×95)= 0.29	(0.003 ×40)= 0.12	0.29-0.12= 0.17ml

- The volume of dissolved O_2 although very small, is of great functional importance for, it is the gas in solution alone that exerts the partial pr
 - It is the PO₂ in blood that determines the quantity of O₂ that will combine with hemoglobin.

Transport of O₂ in combined form

Reaction of Hb & O₂

Hb			
Heme		Globin	
Porphyrin	Fe ⁺²	2α	2β

- MetHb: iron oxidized (Fe⁺³)
- Carboxy-Hb: COHb
 - Hb molecule can transport up to $4 O_2$ molecules.
 - When $4O_2$ are bound to Hb \rightarrow 100 % saturated
 - \uparrow Saturation $\rightarrow \uparrow$ Hb affinity

Hb (deoxy-Hb) + O_2 $Hb_4 + O_2 \leftrightarrows Hb_4 O_2$

 Hb_4O_6 + O_2 \leftrightarrows Hb_4O_8

beta-chain alphachain heme -iron (Fe²⁺) alpharchain

tissues

lungs

 $HbO_2(oxy-Hb)$

- The oxygenation and deoxygenation are rapid (<0.01 sec).
- In deoxygenated Hb, the globin units are tightly bound in a tense (T) state, which reduces the affinity of the molecule for O₂
- When O_2 first bound \rightarrow the bonds holding the globin units are released \rightarrow relaxed (R) state \rightarrow exposes more O_2 binding sites $\rightarrow \uparrow$ in O_2 affinity.
- In tissues, these reactions are reversed, releasing O₂.

The amount of oxygen in the blood:

- 100% O₂ (PO₂=760mmHg) → Hb 100% saturated with O₂ (each gm of pure Hb (1.39ml O₂) → (normal Hb contains 1.34 ml O₂)
- Each dL of blood contains $(15 (Hb\%) \times 1.34 \text{ ml} = 20.1 \text{ ml} \text{ of } O_2)$

	Arterial blood, PO ₂ =95mmHg, Hb saturation 97%	Venous blood, PO ₂ =40mmHg, Hb saturation 75%	Amount of O ₂ carried to tissues by each dL of blood (rest)
Combined O ₂ ml/dL	20.1×0.97= 19.5	20.1× 0.75= 15.1	19.5-15.1 = <mark>4.4</mark>
Dissolved O ₂ ml/dL	0.003 × 95= <mark>0.29</mark>	0.003 × 40= <mark>0.12</mark>	0.29 -012 = <mark>0.17</mark>
Total 0 ₂ ml/dL	19.8mL of O ₂ /dL	15.2mL of O ₂ /dL	19.8-15.2 = 4.6

250 mL of O₂ /min is transported from the blood to the tissues at rest $(4.6 \times 5600/100 \approx 250 \text{mL})$.