The diffusion capacity of lung to gases

\bigcirc Definition: The volume of gas which is diffused $/ \mathrm{min} / 1 \mathrm{mmHg}$ difference in partial pressure of the gas.
© Measurement: The diffusion capacity for $\mathrm{CO}\left(\mathrm{D}_{\mathrm{LcO}}\right)$ is measured as an index of diffusion capacity because its uptake is diffusion limited.

- $\mathrm{D}_{\mathrm{Lco}}$ is proportional to the amount of CO entering the blood $\left(\mathrm{V}_{\mathrm{CO}}\right)$ divided by P_{co} in the alveoli $\left(\mathrm{P}_{\mathrm{AcO}}\right)$ minus the partial pressure of CO in the blood entering pulmonary capillaries \approx zero (except in habitual smokers)

© Factors: same factors that affect rate of gas diffusion through the respiratory membrane affects diffusion capacity of the lung
- It is directly proportional to the surface area of alveolo-capillary membrane and inversely proportional to its thickness.

\bigcirc Normal value

- Dlco at rest is $25 \mathrm{~mL} / \mathrm{min} / \mathrm{mmHg} \quad$ (Diffusion coefficient $=0.8$)
∞ It increases to three fold during exercise because of capillary dilation and an increase in the number of active capillaries
- $\mathrm{DLO}_{2}=\mathrm{DLCO}^{2}=25 \mathrm{~mL} / \mathrm{min}$
$\checkmark \downarrow \mathrm{DLO}_{2}$ Diseases (fibrosis of alveolar walls)
- $\mathrm{DLco}_{2}=400 \mathrm{ml} / \mathrm{min} / \mathrm{mm} \mathrm{Hg}\left(>\mathrm{DLO}_{2}\right) \quad$ (Diffusion coefficient $\left.=20\right)$
ω High solubility of CO_{2} in cell membrane $\left(\mathrm{CO}_{2}\right.$ retention is rarely a problem in patients with alveolar fibrosis even when the reduction in diffusion capacity for O_{2} is sever)

Effect of V/Q on alveolar gas concentration

\bigcirc Ratio of alveolar ventilation(V) to pulmonary blood flow (Q)

- Matching ventilation and perfusion is important to achieve the ideal exchange of O_{2} and CO_{2}
- Normal V/Q (whole lung) at rest is $0.8(4 \mathrm{~L} / \mathrm{min} \div 5 \mathrm{~L} / \mathrm{min})$

Ventilation	Normal	Zero	Normal
Perfusion	Normal	Normal	Zero
V / Q	Normal	Zero $(0 \div 5)$	Infinity(4 $\div 0)$
Situation	Normal	Complete airway obstruction \rightarrow shunted blood	Pulmonary artery obstruction \rightarrow dead space
Gas exchange	Optimal	No gas exchange	No gas exchange
Alveolar: $\mathrm{Po}_{2} \mathrm{mmHg}$ $\mathrm{Pco}_{2} \mathrm{mmHg}$	$\mathrm{PO}_{2}=100$ $\mathrm{Pco}_{2}=40$	$\mathrm{Po}_{2}=40$ $\mathrm{Pco}_{2}=46$	$\mathrm{Po}_{2}=149.7$ $\mathrm{Pco}_{2}=0.3$

Lecture 7

Transport of O_{2} and CO_{2} between the lungs and the tissues：

Objectives

粼 The manner in which O_{2} flows downhill from the lungs to the tissues and CO_{2} flows downhill from the tissues to the lungs．
做 The reaction of O_{2} with $\mathrm{Hb} \& \mathrm{O}_{2}-\mathrm{Hb}$ dissociation curve． ＊＊The important factors affecting affinity of hemoglobin for O_{2} and physiological significance of each．
素 The reactions that increase the amount of CO_{2} in the blood，The CO_{2} dissociation curve for arterial and venous blood．

Oxygen flow from the lungs to the tissues

Pulmonary vein
$\begin{array}{ll}\mathrm{PO}_{2}=97 \mathrm{mmHg} \\ \mathrm{PCO}_{2} & =40 \mathrm{mmHg} \\ \mathrm{O}_{2}\end{array}$

Pulmonary capillary

Factors affecting interstitial fluid (IF) $\mathrm{Po}_{2}=40 \mathrm{mmHg}$

Factor		$\mathrm{IF} \mathrm{PO}_{2}(\mathrm{mmHg})$
Blood flow	$\uparrow \mathrm{Q}$	$\uparrow \mathrm{Po}_{2}$
Hb concentration	$\downarrow \mathrm{Hb}$	$\downarrow \mathrm{Po}_{2}$
Tissue metabolism	\uparrow Metabolism	$\downarrow \mathrm{Po}_{2}$

Diffusion of CO_{2} from the cells to the tissue capillaries and from

 the pul. capillaries to the alveoli:

Effect of tissue metabolism and blood flow on interstitial PcO_{2} (46 mmHg):

Factor		Interstitial $\mathrm{Pco}_{2}(\mathrm{mmHg})$.
Blood flow	$\downarrow \mathrm{Q}$	$\uparrow \mathrm{Pco}_{2}$
Metabolism	\uparrow Metabolism	$\uparrow \mathrm{Pco}_{2}$

Oxygen Transport:

1) 98.5% combines with Hb (Hb increases the O_{2} carrying capacity of blood 70 -fold).
2) 1.5% dissolved in plasma

Transport of oxygen in dissolved form

$\odot 1.5 \%$ of O_{2} is transported in the dissolved form.

\odot Dissolved O_{2} \& $\mathrm{PO}_{2}\left(0.003 \mathrm{ml} / \mathrm{dL}\right.$ blood $\left./ \mathrm{mmHg} \mathrm{PO}_{2}\right)$.

	Arterial blood $\left(\mathrm{PO}_{2}=95 \mathrm{mmHg}\right)$	Venous blood $\left(\mathrm{PO}_{2}=40 \mathrm{mmHg}\right)$	O_{2} transported to tissues by each 100 ml of blood
O_{2} content blood $)$ mlL	$(0.003 \times 95)=0.29$	$(0.003 \times 40)=0.12$	$0.29-0.12=0.17 \mathrm{ml}$

\odot The volume of dissolved O_{2} although very small, is of great functional importance for, it is the gas in solution alone that exerts the partial pr

- It is the PO_{2} in blood that determines the quantity of O_{2} that will combine with hemoglobin.

Transport of O_{2} in combined form

 Reaction of $\mathrm{Hb} \& \mathrm{O}_{2}$| Hb | | | |
| :---: | :---: | :---: | :---: |
| Heme | | Globin | |
| Porphyrin | Fe^{+2} | 2α | 2β |

© MetHb: iron oxidized (Fe^{+3})
○ Carboxy-Hb: COHb

- Hb molecule can transport up to $4 \mathrm{O}_{2}$ molelecililes.
- When $4 \mathrm{O}_{2}$ are bound to $\mathrm{Hb} \rightarrow 100 \%$ saturated
- \uparrow Saturation $\rightarrow \uparrow \mathrm{Hb}$ affinity

- The oxygenation and deoxygenation are rapid (<0.01 sec).
- In deoxygenated Hb , the globin units are tightly bound in a tense (T) state, which reduces the affinity of the molecule for O_{2}
- When O_{2} first bound \rightarrow the bonds holding the globin units are released \rightarrow relaxed (R) state \rightarrow exposes more O_{2} binding sites $\rightarrow \uparrow$ in O_{2} affinity.
- In tissues, these reactions are reversed, releasing O_{2}.

The amount of oxygen in the blood:

- $100 \% \mathrm{O}_{2}\left(\mathrm{PO}_{2}=760 \mathrm{mmHg}\right) \rightarrow \mathrm{Hb} 100 \%$ saturated with O_{2} (each gm of pure $\mathrm{Hb}\left(1.39 \mathrm{ml} \mathrm{o}_{2}\right) \rightarrow$ (normal Hb contains $1.34 \mathrm{ml} \mathrm{o}_{2}$)
- Each dL of blood contains $\left(15(\mathrm{Hb} \%) \times 1.34 \mathrm{ml}=20.1 \mathrm{ml}\right.$ of $\left.\mathrm{O}_{2}\right)$

	Arterial blood, $\mathrm{PO}_{2}=95 \mathrm{mmHg}$, Hb saturation 97%	Venous blood, $\mathrm{Po}_{2}=40 \mathrm{mmHg}$, Hb saturation 75%	Amount of O_{2} carried to tissues by each dL of blood (rest)
Combined O_{2} m//dL	$20.1 \times 0.97=19.5$	$20.1 \times 0.75=15.1$	$19.5-15.1=4.4$
Dissolved O_{2} $\mathrm{~m} / \mathrm{dL}$	$0.003 \times 95=0.29$	$0.003 \times 40=0.12$	$0.29-012=0.17$
Total $\mathrm{O}_{2} \mathrm{~m} / \mathrm{dL}$	19.8 mL of $\mathrm{O}_{2} / \mathrm{dL}$	15.2 mL of $\mathrm{O}_{2} / \mathrm{dL}$	$19.8-15.2=4.6$

250 mL of $\mathrm{O}_{2} / \mathrm{min}$ is transported from the blood to the tissues at rest $(4.6 \times 5600 / 100 \approx 250 \mathrm{~mL})$.

